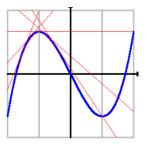
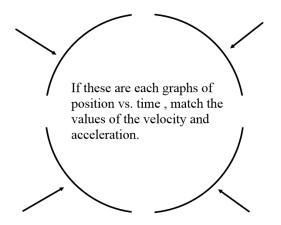

3.4 Concavity and the Second Derivative Test


Concave up like a cup...concave down like a frown!


Definitions:

Concave up:

Concave down:

Concavity test

A function is concave up where:

Point of Inflection(POI) is:

A function is concave down where:

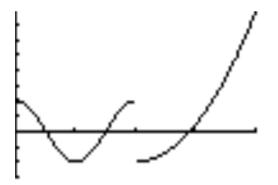
Ex 1. Determine the concavity and identify any points of inflection of $f(x) = \frac{2}{x} + \sqrt{x}$

The second derivative test:

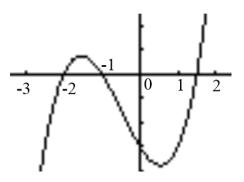
2.

Ex 2. Find the relative extrema and inflection points, intervals of concavity and increasing and decreasing. $f(x) = 5 + 3x^2 - x^3$

EX 3. A function f is cont's on [-3,3] and its first and second derivatives are as follows:

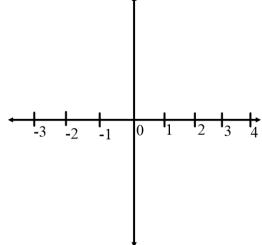

X	(-3,-1)	-1	(-1,0)	0	(0,1)	1	(1,3)
f'(x)	Positive	0	Negative	Negative	Negative	0	Negative
f''(x)	Negative	Negative	Negative	0	Positive	0	Negative

At what x values does f have... a. relative minima? Justify.

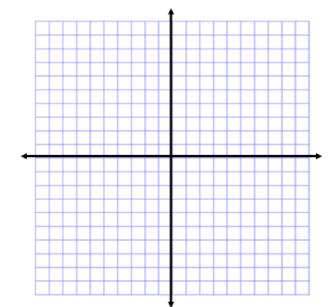

b. relative maxima? Justify.

c. points of inflection? Justify.

Ex 4. Function f(x) is graphed below and is defined on [0,4]. Estimate the intervals on which f '(x) is positive or negative and on which intervals f "(x) is positive or negative.



ex 5. For the graph shown, at which integer value of x is it true that both f '(x)>0 and f "(x)>0?


ex 6. Sketch the graph of a continuous function from [-3,4] which satisfies all the following conditions:

- f '(x)<0 for all real numbers $x \neq 1$;
- f '(1) does not exist;
- f "(x)<0 for all x<1; and
- f "(x)>0 for all x>1

Ex 7. Use f' and f" to graph a possible f(x).

 $f'(x) = 4x^3 - 12x^2$

